Formalization of management tasks in intelligent information fuzzy logic technology

DOI №______

  • Шушура О. М. (Shushura O. M.) State University of Telecommunications, Kyiv
  • Бондарчук А. П. (Bondarchuk A. P.) State University of Telecommunications, Kyiv
  • Сторчак К. П. (Storchak K. P.) State University of Telecommunications, Kyiv
  • Золотухіна О. А. (Zolotukhina O. A.) State University of Telecommunications, Kyiv

Abstract

Intelligent information technologies are widely used for data processing and control in modern technical and organizational systems.
The increasing complexity of the challenges faced by IT developers requires the creation of new ones methodological bases for their construction. Building intelligent information technology to automate the tasks of fuzzy control of complex systems requires the development of approaches to formalizing the task, including presenting relationships between system variables that are subject to control constraints. In many management tasks, these constraints are blurred, and fuzzy logic is used to describe them. The paper proposes approaches to formalizing management problems in intelligent information technologies based on fuzzy logic, including the presentation of variable, fuzzy production rules, and constraints on the problem using the membership function of several arguments. The generalized mathematical formulation of the problem contains the membership function of several arguments to describe the characteristics of terms of linguistic variables and to specify the constraints of the fuzzy control problem. The formalization of «blurred» constraints in the form of membership functions allows them to be taken into account in the problems of fuzzy management and decision support. Forming the form of these membership functions is not an easy task, even if one variable is used. Determination of specific values of the parameters of the membership function depends on the specifics of the problem and is performed by an expert. The expert must have a thorough knowledge of not only the peculiarities of the subject area, but also have mathematical training and ability to set the tasks of fuzzy control. The results of the work can be used in the development of intelligent information technology to automate the tasks of managing complex systems.

Keywords: intelligent information technology; fuzzy control; membership function of several arguments.

References
1. Zadeh L. A. Fuzzy sets // Information and Control. 1965. Vol. 8. P. 338–353.
2. Штовба С. Д. Введение в теорию нечетких множеств и нечеткую логику. 2001 [Електронний ресурс]. URL: http://matlab.exponenta.ru/fuzzylogic/book1/index.php.
3. Зайченко Ю. П. Нечеткие модели и методы в интеллектуальных системах. Киев, 2010. 344 с.
4. Леоненков А. В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб.: БХВ-Петербург, 2005. 736 с.
5. Штовба С. Д. Проектирование нечетких систем средствами MATLAB. Москва, 2007. 288 с.
6. Zeinali M. Multi-layer fuzzy system modeling a new approach: Theory and application: International Conference on Fuzzy Theory and Its Applications (iFUZZY). Pingtung. 2017. Р. 1–6. DOI: 10.1109/iFUZZY.2017.8311811.
7. Шушура О. М. Інформаційна технологія для автоматизації нечіткого керування з нелінійними обмеженнями // Телекомунікаційні та інформаційні технології. 2018. № 2. С. 28–32.

Section
Articles